36 research outputs found

    Real-time fault identification for developmental turbine engine testing

    Get PDF
    Hundreds of individual sensors produce an enormous amount of data during developmental turbine engine testing. The challenge is to ensure the validity of the data and to identify data and engine anomalies in a timely manner. An automated data validation, engine condition monitoring, and fault identification process that emulates typical engineering techniques has been developed for developmental engine testing.An automated data validation and fault identification approach employing enginecycle-matching principles is described. Engine cycle-matching is automated by using an adaptive nonlinear component-level computer model capable of simulating both steady state and transient engine operation. Automated steady-state, transient, and real-time model calibration processes are also described. The model enables automation of traditional data validation, engine condition monitoring, and fault identification procedures. A distributed parallel computing approach enables the entire process to operate in real-time.The result is a capability to detect data and engine anomalies in real-time during developmental engine testing. The approach is shown to be successful in detecting and identifying sensor anomalies as they occur and distinguishing these anomalies from variations in component and overall engine aerothermodynamic performance. The component-level model-based engine performance and fault identification technique of the present research is capable of: identifying measurement errors on the order of 0.5 percent (e.g., sensor bias, drift,level shift, noise, or poor response) in facility fuel flow, airflow, and thrust measurements; identifying measurement errors in engine aerothermodynamic measurements (rotorspeeds, gas path pressures and temperatures); identifying measurement errors in engine control sensors (e.g., leaking/biased pressure sensor, slowly responding pressure measurement) and variable geometry rigging (e.g., misset guide vanes or nozzle area) that would invalidate a test or series of tests; identifying abrupt faults (e.g., faults due to domestic object damage, foreign object damage, and control anomalies); identifying slow faults (e.g., component or overall engine degradation, and sensor drift). Specifically, the technique is capable of identifying small changes in compressor (or fan) performance on the order of 0.5 percent; and being easily extended to diagnose secondary failure modes and to verify any modeling assumptions that may arise for developmental engine tests (e.g., increase in turbine flow capacity, inaccurate measurement of facility bleed flows, horsepower extraction, etc.).The component-level model-based engine performance and fault identification method developed in the present work brings together features which individually and collectively advance the state-of-the-art. These features are separated into three categories: advancements to effectively quantify off-nominal behavior, advancements to provide a fault detection capability that is practical from the viewpoint of the analysis,implementation, tuning, and design, and advancements to provide a real-time fault detection capability that is reliable and efficient

    Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations

    Get PDF
    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain

    GT2006-90165 GROUND TEST DATA VALIDATION USING A SUBSCALE F/A-22 ENGINE INLET EMPIRICAL MODEL

    Get PDF
    ABSTRACT The US Air Force's two main aeropropulsion test centers, Arnold Engineering Development Center and the Air Force Flight Test Center, are developing a common suite of modeling and simulation tools employing advanced predictive modeling technologies. These modeling and simulation tools incorporate real-time data validation, system identification, parameter estimation, model calibration, and automated model updating as new test results or operational data become available. The expected benefit is improved efficiency and accuracy for online diagnostic monitoring of Air Force assets. This paper describes the integrated approach to real-time data validation. Implementation of a software package to enable efficient model handoff between test groups and centers and extension of the capability to aeropropulsion models is discussed. An F/A-22 inlet model is used to demonstrate the approach. Compact polynomial function models of the distortion and recovery flow descriptors and 40-probe pressure values are derived from quasisteady and instantaneous subscale wind tunnel data. The total-pressure inlet distortion and recovery models are integrated in a real-time equipment health monitoring system designed to support test operations, and preliminary results are given. A companion paper describes the integrated approach to system identification, parameter estimation, and model updating

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore